文字 係数 の 一次 不等式

May 7, 2024, 6:44 am

1 yhr2 回答日時: 2020/03/11 13:05 ①の範囲は分かりますね? 【文字係数の一次不等式】場合分けのやり方をイチから解説! | 数スタ. a を含む不等式は [x - (a + 1)]^2 - 1 ≦ 0 → [x - (a + 1)]^2 ≦ 1 と変形できますから、これを満たす x の範囲は -1 ≦ x - (a + 1) ≦ 1 であり、この不等式から2つの不等式 (a + 1) - 1 ≦ x つまり a ≦ x と x ≦ 1 + (a + 1) つまり x ≦ a + 2 ができますよね? この2つを合わせて a ≦ x ≦ a + 2 これが②です。 この②は a の値によって、数直線の「左の方」にあったり「真ん中」にあったり「右の方」にあったりしますね。 それに対して①の範囲は数直線上に固定です。 その関係を示しているのが「解答」の数直線の図です。 ②の範囲が、a が小さくて①よりも左にあれば、共通範囲(つまり、2つの不等式の共通範囲)がありません。 ②の範囲が、a が大きくて①よりも右にあれば、これまた共通範囲(つまり、2つの不等式の共通範囲)がありません。 つまり、a の値を動かしたときに、どこで①と②が共通範囲を持つか、ということを説明したのが数直線の図です。 ←これが質問①への回答 ②の範囲の上限「a + 2」が、①の範囲の下限「-1」よりも大きい、そして ②の範囲の下限「a」が、①の範囲の上限「3」よりも小さい というのがその条件だということが分かりますよね? ←これが質問②③への回答 つまり -1 ≦ a + 2 すなわち -3 ≦ a かつ a ≦ 3 ということになります。 お探しのQ&Aが見つからない時は、教えて! gooで質問しましょう!

数学1の文字係数の一次不等式について質問です。 - Clear

\(x^2\) の係数が文字の場合 一次方程式、二次方程式になる場合で分けて考えていきましょう! 練習問題に挑戦!

【文字係数の一次不等式】場合分けのやり方をイチから解説! | 数スタ

となります。 以上のことをまとめると、 答え \(a≠1\) のとき \(x=\frac{a^2-2}{a-1}\) \(a=1\) のとき 解なし ポイント! \(x\) の係数が0の場合には割り算ができない。 なので、場合分けが必要になる。 文字係数の二次方程式(1)たすき掛け 次の \(x\) についての方程式を解け。\(a\) は定数とする。 (2)\(x^2-2x-a^+1=0\) この問題では、最高次数\(x^2\) の係数は文字ではありません。 そのため、 場合分けを考える必要はありません。 まずは因数分解ができないか考える。 因数分解ができないようであれば解の公式を使って二次方程式を解いていきます。 この問題では、ちょっとイメージしずらいかもしれませんが このようにたすき掛けで因数分解することができます。 $$\begin{eqnarray}x^2-2x-a^+1&=&0\\[5pt]x^2-2x-(a^2-1)&=&0\\[5pt]x^2-2x-(a+1)(a-1)&=&0\\[5pt]\{x-(a+1)\}\{x+(a-1)\}&=&0\\[5pt]x=a+1, -a+1&& \end{eqnarray}$$ ポイント!

【高校数学Ⅰ】文字係数の1次不等式 | 受験の月

\quad 3x+2 \gt x-4 \end{equation*} 文字 $x$ を含む項を左辺に、定数項を右辺に集めるために移項します。 移項した項の符号が変わる ことに注意しましょう。移項後、それぞれの辺を整理します。 \begin{align*} 3x+2 &\gt x-4 \\[ 5pt] 3x-x &\gt -4-2 \\[ 5pt] 2x &\gt -6 \end{align*} その後、 左辺の文字 $x$ の係数を $1$ にする 処理を行います。この処理は、文字 $x$ の 係数 $2$ の逆数を両辺に掛ける か、または 係数 $2$ で割るか のどちらか好きな方で行います。整理すると、一次不等式の解が得られます。 \begin{align*} &\vdots \\[ 5pt] 2x &\gt -6 \\[ 5pt] \frac{2x}{2} &\gt \frac{-6}{2} \\[ 5pt] x &\gt -3 \end{align*} 解答例は以下のようになります。 第2問の解答・解説 \begin{equation*} 2.

と思った方はちょっと落とし穴にはまっているかもしれませんw この問題は 2段階の場合分けが必要 になります。 まずは、\(x\)の係数\(a\)が正、0、負のときで場合分けしていきましょう。 \(a>0\)のとき 係数が正になるので、不等号の向きは変わりません。 $$\begin{eqnarray}ax&>&b\\[5pt]x&>&\frac{b}{a} \end{eqnarray}$$ \(a<0\)のとき 係数が負になるので、不等号の向きが変わります。 $$\begin{eqnarray}ax&>&b\\[5pt]x&<&\frac{b}{a} \end{eqnarray}$$ ここまでは簡単ですね! 気を付けるのは次、係数が0になるときのパターンです。 \(a=0\)のとき \(0\cdot x>b\) という不等式ができます。 ここで困ったことが起こります。 \(x\)がどんな数であっても左辺は0になります。 ですが、\(b\)の値が分からんから、 \(0>b\)が成立するのかどうか不明! ということになります。困りますね(^^;) なので、ここからさらに場合分けをしていきます。 \(b<0\) であれば、\(0>b\) が成立することになるので、 解はすべての実数ということになります。 \(b≧0\) であれば、\(0>b\) は成立しないので、 解なしということになります。 以上のことをまとめると、 答え \(a>0\)のとき \(x>\frac{b}{a}\) \(a=0\)のとき \(b<0\)ならば解はすべての実数、\(b≧0\)ならば解なし \(a<0\)のとき \(x<\frac{b}{a}\) まとめ! お疲れ様でした! 最後の問題はちょっと複雑な感じでしたが、 係数が文字になっている場合には次のようなイメージを持っておくようにしましょう!

高校数学Ⅰ 数と式(方程式と不等式) 2019. 06. 16 検索用コード a, \ b$を定数とするとき, \ 次の不等式を解け. 解は全ての実数解なし. } 方程式のときは, \ 0か否かで場合分けするだけでよかった. \ 0でなければ問題なく割れたわけである. しかし, \ 不等式になると, \ 0か否かだけでなく正か負かも問題になってくる. {負の値で割ると不等号の向きが逆転する}からである. 当然, \ x>-1a\ で終えると0点である. \ aが正か0か負かで3つに場合分けする必要がある. a=0のときは実際に代入して考える. \ 0 x>-1\ は, \ xに何を代入しても成立する. xについての1次不等式であるから, \ まずax 0, \ a-1=0, \ a-1<0に場合分けすることになる. 0 x<0は, \ xに何を代入しても成立しない. a=0のときはさらに2つに場合分けする必要がある. b>0のとき, \ 0 x a³$\ の解が$x<4$となるときの定数$a$の値を求めよ. [-. 8zh] $ax>a³\ より まず場合分けして不等式を解き, \ それがx<4と一致する条件を考えればよい. 不等号の向きに着目すると, \ a<0のときのx 0$を満たす$x$の範囲が$x<12$であるとき, \ $q(x+2)+p(x-1)<0$ を満たす$x$の範囲を求めよ. \ $p, \ q$は実数の定数とする. [法政大] ax>bのように文字が2個ある1次不等式を解こうとすると, \ 4つに場合分けしなければならない. 答案には4つの場合を細かく記述する必要はなく, \ x<12\ となる条件を記述しておけば十分だろう. 不等号の向きを考慮するとp+q<0でなければならず, \ このとき\ x<{q-2p}{p+q}\ となる. よって, \ {q-2p}{p+q}=122(q-2p)=p+qq=5p\ となる. qを消去することを見越し, \ もpのみの条件に変換するとp<0となる. p<0(0)ならば両辺をpで割ることができ, \ さらに不等号の向きが逆転する.

虜 姫 白濁 まみれ の 令嬢, 2024